结合先前的python文章现在我们可以进一步的通过自然语言处理来实操演练,应用到网站中,更好的辅助seo
步骤1:构建语料库:
#!/usr/bin/env python #-*-coding=utf-8-*- #数据源目录(二级目录) sourceDataDir='data' #数据源文件列表 fileLists = [] import os from gensim import corpora, models, similarities def getSourceFileLists(sourceDataDir): fileLists = [] subDirList = os.listdir(sourceDataDir) for subDir in subDirList: subList = os.listdir(sourceDataDir + '/' + subDir) fileList = [ sourceDataDir+'/'+subDir+'/'+ x for x in subList if os.path.isfile(sourceDataDir+'/'+subDir+'/'+x)] fileLists += fileList return fileLists fileLists = getSourceFileLists(sourceDataDir) if 0 < len(fileLists): import codecs import jieba punctuations = ['','\n','\t',',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%'] if not os.path.exists('dict'): os.mkdir("dict") if not os.path.exists('corpus'): os.mkdir("corpus") for fileName in fileLists: print fileName hFile = None content = None try: hFile = codecs.open(fileName,'r','gb18030') content = hFile.readlines() except Exception,e: print e finally: if hFile: hFile.close() if content: fileFenci = [ x for x in jieba.cut(' '.join(content),cut_all=True)] fileFenci2 = [word for word in fileFenci if not word in punctuations] texts = [fileFenci2] all_tokens = sum(texts, []) tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1) texts = [[word for word in text if word not in tokens_once] for text in texts] sFileDir, sFileName = os.path.split(fileName) dictFileName = 'dict/'+sFileName+'.dict' corpusFileName = 'corpus/'+sFileName+'.mm' dictionary = corpora.Dictionary(texts) dictionary.save_as_text(dictFileName) corpus = ([dictionary.doc2bow(text) for text in texts]) corpora.MmCorpus.serialize(corpusFileName, corpus) print 'Build corpus done'
数据源:
来自 https://d1.txthj.com/newrar/txthj_264.rar 的83篇小说,将其目录存放在目录 ./data/下。
加载时作为二层目录处理
输出:
./dict 和 ./corpus
在对应目录下生成 xxx.dict 和 xxx.mm,xxx为原文件的全称(不包括路径,包括后缀)
步骤2:加载语料库,相似性分析
#!/usr/bin/env python #-*-coding=utf-8-*- import os from gensim import corpora, models, similarities def getFileList(dir): return [ dir + x for x in os.listdir(dir)] dictLists = getFileList('./dict/') class LoadDictionary(object): def __init__(self, dictionary): self.dictionary = dictionary def __iter__(self): for dictFile in dictLists: sFileRaw, sFilePostfix = os.path.splitext(dictFile) sFileDir, sFileName = os.path.split(sFileRaw) (dictFile, corpusFile) = ( './dict/' + sFileName + '.dict', './corpus/'+sFileName + '.mm') yield self.dictionary.load_from_text(dictFile) class LoadCorpus(object): def __iter__(self): for dictFile in dictLists: sFileRaw, sFilePostfix = os.path.splitext(dictFile) sFileDir, sFileName = os.path.split(sFileRaw) (dictFile, corpusFile) = ( './dict/' + sFileName + '.dict', './corpus/'+sFileName + '.mm') yield corpora.MmCorpus(corpusFile) """ 预处理(easy_install nltk) """ #简化的 中文+英文 预处理 def pre_process_cn(inputs, low_freq_filter = True): """ 1.去掉停用词 2.去掉标点符号 3.处理为词干 4.去掉低频词 """ import nltk import jieba.analyse from nltk.tokenize import word_tokenize texts_tokenized = [] for document in inputs: texts_tokenized_tmp = [] for word in word_tokenize(document): texts_tokenized_tmp += jieba.analyse.extract_tags(word,10) texts_tokenized.append(texts_tokenized_tmp) texts_filtered_stopwords = texts_tokenized #去除标点符号 english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%'] texts_filtered = [[word for word in document if not word in english_punctuations] for document in texts_filtered_stopwords] #词干化 from nltk.stem.lancaster import LancasterStemmer st = LancasterStemmer() texts_stemmed = [[st.stem(word) for word in docment] for docment in texts_filtered] #去除过低频词 if low_freq_filter: all_stems = sum(texts_stemmed, []) stems_once = set(stem for stem in set(all_stems) if all_stems.count(stem) == 1) texts = [[stem for stem in text if stem not in stems_once] for text in texts_stemmed] else: texts = texts_stemmed return texts dictionary = corpora.dictionary.Dictionary() dictionary_memory_friendly = LoadDictionary(dictionary) for vector in dictionary_memory_friendly: dictionary = vector corpus = [] corpus_memory_friendly = LoadCorpus() for vector in corpus_memory_friendly: corpus.append(vector[0]) if 0 < len(corpus): tfidf = models.TfidfModel(corpus) corpus_tfidf = tfidf[corpus] model = models.LsiModel(corpus_tfidf, id2word=None, num_topics=20, chunksize=2000000) #不指定 id2word=dictionary 时,LsiModel内部会根据 corpus 重建 dictionary index = similarities.Similarity('./novel_', model[corpus], num_features=len(corpus)) #要处理的对象登场,这里随便从小说中截取了一段话 target_courses = ['男人们的脸上沉重而冷凝,蒙着面纱的女人们则是发出断断续续的哭泣声,他们无比专注地看着前方,见证一场生与死的拉锯战。'] target_text = pre_process_cn(target_courses, low_freq_filter=False) """ 对具体对象相似度匹配 """ #选择一个基准数据 ml_course = target_text[0] #词袋处理 ml_bow = dictionary.doc2bow(ml_course) #在上面选择的模型数据 lsi model 中,计算其他数据与其的相似度 ml_lsi = model[ml_bow] #ml_lsi 形式如 (topic_id, topic_value) sims = index[ml_lsi] #sims 是最终结果了, index[xxx] 调用内置方法 __getitem__() 来计算ml_lsi #排序,为输出方便 sort_sims = sorted(enumerate(sims), key=lambda item: -item[1]) #查看结果 print sort_sims[0:10] print len(dictLists) print dictLists[sort_sims[1][0]] print dictLists[sort_sims[2][0]] print dictLists[sort_sims[3][0]]
说明:
yield的使用是为了更好的内存效率。
遗留问题:
步骤2会有提示:
/usr/lib/python2.7/dist-packages/scipy/sparse/compressed.py:122: UserWarning: indices array has non-integer dtype (float64)
不影响处理过程
原文:深蓝苹果 https://my.oschina.net/kakablue/home
我只是来看一看,好久没来了~
日复一日,年复一年,你的博客,让人流连!